Lab session 0: Introduction to Python

GP Summer School—Kampala, 6-9th of August 2013

The aim of this lab session is to get you familiar with coding in Python. We will
illustrate how to execute some useful tasks in Python by solving a linear regression
problem. Please follow the installation instructions from the outline document, in case
your computer does not have Python 2.7 and GPy already installed.

We first open ipython and import the libraries we will need:

import numpy as np
import pylab as pb

pb.ion()

Remember to check what a command does, simply type:

np.random.randn?

1 Linear regression: iterative solution

For this part we are going to load in some real data, we will use an example from the
Olumpics: the pace of Marathon winners. To load their data (which is in comma sepa-
rated values (csv) format) we need to download it from: http://staffwww.dcs.shef.
ac.uk/people/N.Lawrence/olympicMarathonTimes.csv, and load it as follows:

olympics = np.genfromtxt (, delimiter=’,")

This loads the data into a Python array
You can extract the Olympic years and the pace of the winner, respectively, as:

x = olympics[:, 0:1]
= olympics[:, 1:2]

<
|

You can see what the values are by typing:

print (x)
print (y)

You can make a plot of y vs x with the following command:

pb.plot(x, y, "rx")

5.5 T T T T T T

5.0

T

4.5¢ . l

4.0F 1

3.5 4

3.0

T
X
!

zf%BO 1900 1920 1940 1960 1980 2000 2020

Figure 1: Olympic Marathon Winners’ Times.

Now we are going to fit a line, y; = mx; + ¢, to the data you've plotted . We are trying
to minimize this error:

1 n
E(m,c,(fz) = glogff2 + 202 Z (y; — mx; —c)z,
i=1

with respect to m, ¢ and c?. We need to start with an initial guess for m, the actual
value doesn’t matter too much, try setting it to zero, then use this formula to set c:
* ?:l (yl - m*xi)

c = ’
n

followed by this formula to estimate m:

o = Lz i (i —)
5 .
i1 %
Iterate between the two formulae and compute the error after each iteration and see
how much it changes. Finally when the error stops changing update the estimate of the
noise variance:

2 = Yic (i —m*xi — c*)?
n

Print the final recorded values for the error, m, ¢ and 2. Plot the error as a function of
iterations. Ensure it goes down at each iteration.

You can add the line fitted to the figure you created earlier. To do this, we will create
some “test’ data uniformly spaced along the x-axis. For example, you can create a set
of values between two points with the command np.linspace :

xTest = np.linspace(1890,2010,100)
pb.plot(xTest,m*xTest + c,)

Question 1la The error function used above assumes the following model y; = mx; +
c¢; + €;, where €; corresponds to the observed noise. What is a sensible assumption
about the noise’s probability density?

Question 1b What are the mean and standard deviation of the observed noise?

Question 1c Can you write down the probability density for y?

2 Basis functions

We don’t need to run the iterative algorithm. Since there was a gradient and an offset,
we will use the ‘trick” of having a basis set containing the data and another basis set
containing the ’constant function’ (i.e. set to 1).

Phi = np.hstack((np.ones(x.shape), x))
print (Phi)

We can use this basis set to learn m and c simultaneously. The maximum likelihood
solution for w is:

-1
W' = [qﬂcp} o'y,
but you should solve the matrix equation:
O dW=0'y

directly to get the best solution (Hint: try np.linalg.solve?) and call the resulting
variable wStar . Implement this update and show that wj (the first element of w*) is
equal to ¢ and w} is equal to m.

Create some ‘test’ data, as before, and create an associated feature matrix to add the
bias term:

PhiTest = np.zeros((xTest.shape[0], 2))
PhiTest[:, 0] = np.ones(xTest.shape)
PhiTest[:, 1] = xTest

To obtain and plot the test outputs you can write:

yTest = np.dot(PhiTest, wStar)
pb.plot(xTest, yTest,)

Now we will fit a non-linear basis function model. Start by creating a quadratic basis:

Phi = np.zeros((x.shape[0], 3))
for i in (0, 3):
Phil[:, i] = x.T**i

Question 2a Plot the fit and compute the final error using the non-linear basis func-
tion.

Question 2b Large order polynomial fits tend to do fairly extraordinary things out-
side an input range of 1896 to 2008. Have a think about why this is, in particular, what
is the result of 2012%?

Question 2¢ Do you think that is a suitable basis?

