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Introduction Gaussian Processes(GP)- Regression

@ Data Modelling (Pre-introduction to Gaussian
Processes-regression):Regression problem

© Parametric Models : Motivation
© Non-Parametric Models, and the Gaussian Process
@ Gaussian Processes

© Additional Resources
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Data Modelling: Regression

@ Let say we have data D = {X, y}

e We are interested in finding the function f, such that y = f(x) + e
describes the behaviour of data D with some error bars e
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Data Modelling: Regression

@ Possible approaches towards finding f will be:

e Parametric Approach: Neural Networks family,
o Non-Parametric Approach - KNN, SVMs, Gaussian Processes

2
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Data Modelling: Regression - Parametric Models

e We have Data D = {X,y}
@ Parametric Approach:

o Choose a function class f(x) or a mapping - With FIXED NUMBER
of parameters ©

o Learn the PARAMETERS ©* of the model f(x).

o Parameter Estimations

e Maximum Likelihood Estimation (MLE): Find the optimal value ©*

o Maximum A-Posterior Distribution (MAP) — learn a point
estimate (Mode of posterior distribution) of the FIXED ©*, using a
prior over ©*. Roburst to overfitting

o Full Bayesian Methods: Learn plausable/feasible distribution over

parameters ©*. Using approximation methods: Variational Methods,
MCMC, Laplace
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Data Modelling: Graphical Intuition - Motivation:

Parametric models (Point Estimates vs Distribution)

o Consider the data scatter plot below

e How would you fit this model f(x)?
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Data Modelling: Graphical Intuition - Motivation: Linear

Parametric models - Parametric models (Point Estimates
vs Distribution)

e Linear Model f(x) = 01x + 6, - fitted using MLE or MAP
e Optimal parameters ©* = {01,6,}
e NOTE: Fixed Number of Parameters (2-parameters in this example)
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Data Modelling: Graphical Intuition - Motivation: Linear

Parametric models

Linear Model f(x) = 01x + 6,
Full Bayesian - Distribution of the parameters ©*,
Optimal parameters ©* = 64,6,

NOTE: Still Fixed Number of Parameters (2-parameters in this
example)
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Data Modelling: Graphical Intuition - Motivation:

Quadratic Parametric models - MLE

o Quadratic Model f(x) = 61x? + f2x + 03 - fitted using MLE or MAP

e Optimal parameters ©* = {601,6,63} NOTE: Fixed Number of
Parameters (3-parameters in this example)
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Data Modelling: Graphical Intuition - Motivation:

Quadratic Parametric models - MAP

e Quadratic Model f(x) = 01x? 4 ox + 63

o Full Bayesian - Distribution of the parameters ©*

e Optimal parameters ©* = {01, 05,63}

e NOTE: Still Fixed Number of Parameters (3-parameters in this
example)
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Data Modelling: Graphical Intuition - Motivation: Cubic

Parametric models - MLE

o Quadratic Model f(x) = 01x3 4 02x2 + 03x + 0,4 - fitted using MLE or
MAP

e Optimal parameters ©* = {601,605, 03,04}

@ NOTE: Fixed Number of Parameters (4-parameters in this example)
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Data Modelling: Graphical Intuition - Motivation: Cubic

Parametric models - MAP

Quadratic Model f(x) = 01x3 + 01x% + O2x + 63

Full Bayesian. Distribution of the parameters ©*

Optimal parameters ©* = {01,605, 03,04}

NOTE: Fixed Number of Parameters (4-parameters in this example)
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Data Modeling: PUNCH-LINE

@ What if we dont want to specify the number of parameters upfront in
our model?

@ Also what if we want to consider a distribution over plausable
functions that describe our data, such that these functions
complexity /parameters scale with the data

@ Also we might want our model to be able to handle missing Missing
data: aka Generative Model

o How?7?
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Non Parametric models

What is a Non-parametric model?
@ No! It does NOT mean the model has no parameters

@ Simply means the models’s number of parameters is NOT fixed or
determined upfront like in the previous examples - parametric models

@ When you hear nonparametric, think models whose parameters scale
with amount/complexity of data
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Non Parametric models -GPs

@ So we want a model whose parameters scale with data/complexity

@ We also want to model plausable functions f(x) that describes our
data

@ Consequently, we want is a distribution over these functions

Sounds Cool!!!
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Non Parametric models -GPs

e But How??
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Parametric models -Gaussian Processes

@ Lets define a vector of function values evaluated at n points for
xi € X as f = (f(x1), f(x2), .., f(xn))

@ Lets also assume the notion of smoothness of f to mean points
(f(xi), f(xi+1)) that are closer in space are highly correlated.
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Figure: Smoothness Assumption. Source: Neil Lawrence
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Non Parametric models -Gaussian Processes

Definition: Gaussian Process:

@ Guassian processes GPs assume neighbouring points x;, x;11 are
correlated and function values f;, fi;1 are distributed multivariate
gaussian

@ Hence, GPs are parameterized by u(x) and covariance function or
kernel K(xj, xj+1)

p(fi, fiy1) = GP(u, K) (1)

= [ (i) } K= [ K(xi,xi)  K(xi; xit1) 2)

p(Xit1) K(xit1, i) K(Xiy1,xi11)
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Non Parametric models - Gaussian Processes

Similarly p(f) = p(f(x1), f(x2), ....., f(xn)) is also multivariate guassian
given by

p(f) = N(u, K) (3)
where
ZEil; K(Xl,Xl) K(Xl,XQ) . K(xhxn)
Y 1 K= K(x2,x1) K(x2,x2) .. K(x2,xn) @)
:u’(Xn) K(Xn,Xl) K(Xn,Xg) .. K(men)
Note:

o function K generates the covariance matrix X

@ ¥ must be positive definite functions/matrices

@ Note also that f could easily be infinite dimension as n tend to
infinitiny
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Brief Note on Multivariate Norm

Multivariate Normal - Statistic's swiss army knife
X, £ ~ MVNorm(u, X)

@ A highly useful joint distribution for continous, vector-valued
observations

@ Parameterized by mean vector 1 and covariance matrix -

Multivariate Normal Distribution
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Properties Multivariate Norm

Theorem
Suppose x = (x1, x2) is jointly Gaussian with parameters

By Y X o1 (A A12)
= ) E = \ A = E =
g (IJ’Z) / (221 ):22) ’ (AQ] AQQ

Then the marginals are also Gaussians given by

p(Xl) = N(X1|M1,211)
p(x2) = N(xz2|pq, X22)
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Properties Multivariate Norm

Theorem - continues
The posterior is also gaussian given by

p(x1xg) = N(x1|ppp, Zapp)
Pyg =y + 1555 (X2 — o)
=H— AilAl?(XZ = )
= z1\2 (Aripy — A (x2 — py))
D = 311 — T128y, By = Ay
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Non Parametric models - Gaussian Processes

@ GPs HAVE parameters: they are parameterized by p and class of
kernel function K(x;, x;) :

@ However, parameters scale with complexity /data

@ An example of a Kernel function is

[Ixi — x>
K (i 1©) = oexp| — -2 | (5)
Hyper parameters = [0y, ¢] - parameter vector

e / is the lengthscale,
e Oy is known as the amplitude
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Non Parametric models - Gaussian Processes

Some kernel functions

"
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Figure: Effect on choosing different kernels on the prior function distribution.
Source: wikipedia
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Non Parametric models - Gaussian Processes

Once we design on our kernel function
Gaussian processes can thus be used for bayesian regression:

plrio) = £ A0 (6)

Where p(f) represents our prior before of the functions
p(DI|f is our likelihood of the Data D given the functions
p(f|D) is our posterior after observing the data D
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Non Parametric models - Recap Bayes theorem

Recap: Bayes’' Theorem/What's a

likelihood?
Likelihood Prior
Posteii‘or P?D’Q)P (0/)
r r
Pr(0|D) =
| r(6]D) Pr(D)
8 N 1
£ s Pr(D|6) =
(DIF) E 20’271'

50
L

[}

NOTE: A likelihood is your
model for how the data was
generated
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Non Parametric models - Where does the likelihood come

from?

@ All probability modeling starts with a preliminary analysis or visual
inpsection of the data

o Called Exploratory Data Analysis (EDA)
e Motivates choice/formulation of the likelihood

NOTE

o Carrying out EDA doesnt violate spirit of prior specification unless the prior
is engineered to look exactly like whats in the data

o This is why we tend to

o elicit priors from third-party experts
@ use flat, non-informative priors
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GPs - Regression Prediction

@ We have training data D = {X, y}
@ We want to predict y, given points X,
@ Our model is

4 yn:fn+en
o f ~ GP(0,K)

@ Then we can make predictions by combining the likelihood and
posterior theoretically as

pU-1X.. D) = [ ply:IX.. . D)p(r|D)l (7)
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Non-Parametric Models - Gaussian Processes -Regression

Prediction

o If we assume Gaussian noise: y, = f, + e,, where e ~ N(0, 0?)
o Likelihood is gaussian : IID samples

@ Predictive distribution has Gaussian Analytical solution as

Gaussian Process

p(y«|Xe; D)~ N(flps, ) (8)
pe = KIKly (9)
Y. = Ku— K'K, (10)
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Non-Parametric Models - Gaussian Processes -Regression
Prediction

Gaussian Process

Py« X, D)~ N(f|ps, Xs) (11)
e = KIK 'y (12)
Y. = Ku— K 'K, (13)
Where
o K, =K+ol

o K - is a kernel function covariance matrix of of x1, xs, ..., X,
o K, correlation between xi, xo, ..., X, and X, - the test points

o K., correlation between X,

Charles I. Saidu I, Michael Mayhew 2 (AUST Gaussian Processes June 5, 2019 30/35



Non-Parametric Models - Gaussian Processes -Regression

Prediction

How do we choose hyper-parameters
@ Optimizations to find hyperparameters
What about NON-Gaussian Likelihood functions

@ For NON Gaussian Likelihood, The posterior does NOT have
analytical form. NO SUMMARISING STATISTICS. Hence, we
obtain posterior via

e Sampling
e Analytic approximations
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Why Gaussian Processes

What are they good for
@ Good for time series data
@ Directly captures model uncertainty
o Work very well no so large datasets
@ Ability to be able to encode prior information of the model
@ handles model complexity and scalability quite well
Some limitations

@ Not so great for large dataset (time/space complexity). However,
parallelization, Sparse GPs and other techniques tries to solve this

@ May not be your number one go-to option for classification problems
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GPs: Demos GPs from Scratch Intro. Using GPy Library

@ Notebook on coding GPs using the equations above using python
numpy included (Just the intuition).

@ Practical handson using GPy Coming up!
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Additional resources

e C. E., Rasmussen and C. K. I. Williams (2006) Gaussian Processes for
Machine Learning

Lecture Notes Neil Lawrence - http://inverseprobability.com

Lecture Notes Lehel Csato - http://www.cs.ubbcluj.ro/~csatol/

Lecture Notes Nando de Freitas Video -
http://www.cs.ox.ac.uk/people/nando.defreitas/

Gaussian processes website - http://www.gaussianprocess.org/
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Thank you: Questions?
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