
Reinforcement Learning

Chika Yinka-Banjo, PhD
University of Lagos

Nigeria

Ayorkor Korsah, PhD
Ashesi University

Ghana

Data Science Africa 2018
Abuja, Nigeria (12 Nov - 16 Nov 2018)

Outline

• Introduction to Machine learning
• Reinforcement learning definitions
• Example reinforcement learning problems
• The Markov decision process
• The optimal policy
• Value function & Q-value function
• Bellman Equation
• Q-learning
• Building a simple Q-learning agent (coding)
• Recap
• Where to go from here?

Introduction to Machine learning

• Artificial Intelligence (AI) is the study and
design of Intelligent agents.

• An Intelligent agent can perceive its
environment through sensors and it can
act on its environment through actuators.

• E.g. Agent: Humanoid robot
• Environment: Earth?
• Sensors: Camera, tactile sensor etc.
• Actuators: Motors, grippers etc.
• Machine learning is a subfield of Artificial

Intelligence

Branches of AI

Introduction to Machine learning

• Machine learning techniques learn
from data without being explicitly
programmed to do so.
• Machine learning models enable the

agent to learn from its own
experience by extracting useful
information from feedback from its
environment.
• Three types of learning feedback:
• Supervised learning
• Unsupervised learning
• Reinforcement learning

Branches of Machine learning

Supervised learning
• Supervised learning: the machine

learning model is trained on many
labelled examples of input-output
pairs.
• Such that when presented with a

novel input, the model can estimate
accurately what the correct output
should be.
• Data(x, y): x is input data, y is label
• Goal: learn a function to map x -> y
• Examples include; Classification,

regression object detection, image
captioning etc.

Supervised learning task in the form of classification

Unsupervised learning

• Unsupervised learning: here the model
extract useful information from
unlabeled and unstructured data.
• Data: x (raw data)
• Goal: learn an underlining structure in

the data that is not explicitly defined
• Examples include; Clustering, density

estimation, dimensionality reduction,
etc.

Reinforcement learning

• Reinforcement learning involves
problems where an agent
interacts with an environment
that provides numeric reward
signals
• Goal: learn how to take actions

in a given state, in order to
maximize the reward.

Reinforcement Learning

• Learning by interacting with an environment
• Trial-and-error learning: the agent takes actions and gets feedback

through a numeral reward/penalty)

Action 1: try taking
hot bread from
oven without
gloves

Action 2: take hot
bread from oven
with gloves

Reward: +100
Reward: -100

Supervised Learning versus
Reinforcement Learning
Supervised Learning Reinforcement Learning
Learns a function, f: X → Y that
maps X (input) to Y (e.g. class label)

Learns a policy function π: S → A that
maps from states to actions

We have labelled training data that
indicates the correct Y for given X

We don’t have “labelled” training data
that indicates the correct action to take
for a given state

Agent learns directly from labelled data Agent learns indirectly from time-
delayed rewards collected through
experience (trial-and-error)

Reinforcement learning definitions

• Agent: An agent takes actions; for example, a drone making a delivery, or Super Mario navigating
a video game. The algorithm is run by the agent. In life, the agent is you.

• Actions (A): A is the set of all possible moves the agent can make. An action is almost self-
explanatory, but it should be noted that agents choose among a list of possible actions.

• Environment: The world through which the agent moves. The environment takes the agent’s
current state and action as input, and returns as output the agent’s reward and next state.

• State (S): A state is a concrete and immediate situation in which the agent finds itself; i.e. a
specific place and moment, an instantaneous configuration that puts the agent in relation to
other significant things such as tools, obstacles, enemies or prizes.

• Reward (R): A reward is the feedback by which we measure the success or failure of an agent’s
actions.

Let’s define the key terms in reinforcement learning.

Reinforcement learning definitions contd....

• Discount factor: The discount factor is multiplied with future rewards as discovered by the agent
in order to dampen their effect on the agent’s choice of action. It makes future rewards worth
less than immediate rewards; i.e. it enforces a kind of greediness on the agent. Often expressed
with the lower-case Greek letter gamma: γ.

• Policy (π): The policy is the strategy that the agent employs to determine the next action based
on the current state. It maps states to actions, the actions that promise the highest reward.

• Value (V): The expected long-term return with discount, as opposed to the short-term reward R.
Vπ(s) is defined as the expected long-term return of the current state under policy π. We discount
rewards, or lower their estimated value, the further into the future they occur.

• Q-value or action-value (Q): Q-value is similar to Value, except that it takes an extra parameter,
the current action a. Qπ(s, a) refers to the long-term return of the current state s, taking action a
under policy π. Q maps state-action pairs to rewards. Note the difference between Q and policy.

• Trajectory: A sequence of states and actions that influence those states. From the Latin “to throw
across.”

Toy Example
• 9 possible states: {S0, S1, …, S8}
• 5 possible actions in each state:

{up, right, down, left, stay}
• Rewards:
• Attaining the goal state has a reward of +50
• Trying to walk into a wall has a penalty (negative

reward) of -5
• All other actions have a reward of 0

• By trial-and-error, the agent needs to learn an
optimal policy, i.e. what the best action is to take
in each state

S0 S1 S2

S3 S4 S5

S6 S7 S8

Toy Example – Examples of Effects of Actions
• Results of actions from S2:
• up: Reward = -5, Ends up still in S2
• right: Reward = -5, Ends up still in S2
• down: Reward = 0, Ends up in S5
• left: Reward = 0, Ends up S1
• stay: Reward = 0, Ends up still in S2

• Results of actions from S6:
• up: Reward = 0, Ends up still in S3
• right: Reward = +50, Ends up in S7
• down: Reward = -5, Ends up still in S6
• left: Reward = -5, Ends up still in S6
• stay: Reward = 0, Ends up still in S6

S0 S1 S2

S3 S4 S5

S6 S7 S8

Reinforcement Learning Examples

• Pancake flipping robot (2010)

https://www.youtube.com/watch?v=W_gxLKSsSIE

Reinforcement Learning Examples

Cart-pole problem • Objective: Balance a pole on top of a
movable cart
• State: angle, angular speed, position,

horizontal velocity
• Action: Horizontal force applied on

cart
• Reward: 1 at each time step if the pole

is upright

Reinforcement Learning Examples

Atari games • Objective: Complete the game with
the highest score
• State: Raw pixel inputs of the game

state
• Action: Game controls e.g. up, left,

right , down.
• Reward: Score increase or decrease at

each time step

Reinforcement Learning Examples

Go (Board game) • Objective: Win the game!
• State: Position of all the pieces
• Action: Where to put the next piece

down
• Reward: 1 if win at the end of the

game, 0 otherwise

Markov Decision Process

• The Markov state provides a means of formulating the reinforcement learning process
mathematically

• Markov property: The current state completely encapsulates the state of the world
Defined by (S, A, ℛ,ℙ, γ)
S : set of possible states
A : set of possible actions
ℛ: distribution of reward given (state, action) pair
ℙ: transition probability i.e. distribution over next state given
γ: discount factor

Markov Decision Process

• At time step t = 0, environment samples initial state !" ~ $(!")
• Then, for t = 0 until done:
- Agent selects action &'
- Environment samples reward (' ~ R(.| !', &')
- Environment samples next state !'*+ ~ P(.|!', &')
- Agent receives reward (' and next state !'*+

• A policy , is a function from S to A that specified what action to take in each state
• Objective: find the optimal policy ,∗ that maximizes cumulative discounted reward:∑'/" γ'('

The optimal policy

• We want to find the optimal policy !∗ that maximizes the sum of
rewards.
• How do we handle the randomness (initial state, transition

probability...)?
• Maximize the expected sum of rewards!

• Formally: #∗ = arg()* + [∑./0 γ.2.] with
40 ~ 6(40),). ~ #(.| 4.), 4.89 ~ P(.|4.,).)

Value function and Q-value function

Following a policy produces sample trajectories (or paths) !", #", $", !%, #%, $%,
How good is a state?
The value function at state s, is the expected cumulative reward from following the
policy from state s:

&'(!) = + [-
./"

γ.$. |!" = !, 3]

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward
from taking action a in state s and then following the policy:

5'(!, #) = + [-
./"

γ.$. |!" = !, #" = #, 3]

Q-Table

• A table of Q-values for each state-action pair
• Q-value estimates the expected long-term reward for taking a given

action from a given state

Action 1 Action 2 Action 3
State 1 Q(s1,a1) Q(s1,a2) Q(s1,a3)
State 2 Q(s2,a1) Q(s2,a2) Q(s2,a3)
State 3 Q(s3,a1) Q(s3,a2) Q(s3,a3)
State 4 Q(s4,a1) Q(s4,a2) Q(s4,a3)
State 5 Q(s5,a1) Q(s5,a2) Q(s5,a3)
State 6 Q(s6,a1) Q(s6,a2) Q(s6,a3)
State 7 Q(s7,a1) Q(s7,a2) Q(s7,a3)

Bellman Equation for updating the Q-values

• ! ", $ ← ! ", $ + ' (+)*+,
-

! "., - − !(", $)

Equivalent	to:
• ! ", $ ← (? − ')! ", $ + ' (+)*+,

-
! "., -

@ = Learning rate – how much do we update the q-value in each iteration? (0 < @ ≤ 1)

E = Discount factor – how important are future rewards? (0 ≤ E ≤ 1)S – Current state
A – Chosen action

R – Reward from taking action A in state S

S’ – New state resulting from taking action A in state S

Q-learning

We can use the bellman equation as an iterative means of determining the optimal
policy. Such a value iteration algorithm is referred to as Q-learning and will be of
the form;

Where ! is the learning rate (0 < ! ≤1)
The Q-learning algorithm is also referred to as temporal difference learning.

Q-learning - Algorithm

Q-Learning Algorithm

• Initialize:	 Q(s,	a),	for	all	s ∈	S,	a ∈	A(s),	arbitrarily,	and	
Q(terminal-state,	·)	=	0

• Repeat	(for	each	episode):	
• Initialize	starting	state	S
• Repeat	(for	each	step	of	episode):	

• Choose	action	A to	take	from	S	using	a	policy	derived	from	Q
• Take	action	A,	observe	reward	R,	and	new	state	IJ

• Update Q-value: K L, M ← K L, M + P Q + RSTU
V

K LJ, V − K(L, M)

• Update	current	state:	S	←	S′	
• until	S is	terminal	

Sometimes the agent explores - tries random actions
Sometimes the agent exploits – chooses the best action based on its prior experience

Building a simple Q-learning agent
(Coding session)

Source Code: https://github.com/chikayinkabanjo/Reforcement-Learning
Development Environment: https://colab.research.google.com/

https://colab.research.google.com/

Recap

• Reinforcement learning as a branch of machine learning, involves an agent-
environment relationship where the agent chooses actions that maximize a
reward within that environment
• A policy is the strategy the agent employs to determine the next action given its

current state. The goal is to optimize the policy that returns the maximum
cumulative future reward.
• The Q-value function is a key function for estimate the maximum expected

reward given a state-action pair
• The Q-value function optimizes and updates the agents policy
• The Q-learning algorithm is an iterative algorithm for estimating the Q-value for

state-action pairs.

Where to go from here?

• Function approximators: The Q-learning algorithm is computationally
infeasible for very high dimensional state-action spaces. We need a
function approximator such as a deep neural network, to estimate
!∗(s, a).
• This will introduce the subject of Deep Reinforcement Learning using

deep learning techniques.

Further Reading

• Reinforcement Learning: An introduction by Sutton and Barto
• Deep Reinforcement Learning: An overview by Yuxi Li
• Jens Kober, J. Andrew Bagnell and Jan Peters, “Reinforcement learning in

robotics: A survey”, International Journal of Robotics Research, 32(11)
1238–1274
• Florentin Woergoetter and Bernd Porr (2008), Scholarpedia, 3(3):1448

http://www.scholarpedia.org/article/Reinforcement_learning
• Satwik Kansal and Brendan Martin, “Reinforcement Q-Learning from

Scratch in Python with OpenAI Gym”,
https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-
python-openai-gym/

http://www.scholarpedia.org/article/Reinforcement_learning
https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-python-openai-gym/

Thank you

