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: observations, could be actively or passively acquired
(meta-data).
. assumptions, based on previous experience (other

data! transfer learning etc), or beliefs about the regularities of
the universe. Inductive bias.

: an action to be taken or a categorization or a
quality score.
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pointl: x=1, y=3
3=m+c
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Applications of Machine Learning

Handwriting Recognition : Recognising handwritten characters.
For example LeNet http://bit.ly/d26fwK.

Friend Indentification : Suggesting friends on social networks
https:
//www.facebook.com/help/501283333222485

Ranking : Learning relative skills of on line game players, the
TrueSkill system http://research.microsoft.
com/en-us/projects/trueskill/.

Collaborative Filtering : Prediction of user preferences for items
given purchase history. For example the Netflix Prize
http://www.netflixprize.com/.

Internet Search : For example Ad Click Through rate prediction
http://bit.ly/a7XLH4.

News Personalisation : For example Zite http://www.zite.com/.

Game Play Learning : For example, learning to play Go
http://bit.ly/cV77zM.
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History of Machine Learning (personal)
Rosenblatt to Vapnik

e Arises from the Connectionist movement in Al.
http://en.wikipedia.org/wiki/Connectionism

e Early Connectionist research focused on models of the brain.


http://en.wikipedia.org/wiki/Connectionism

Frank Rosenblatt’s Perceptron

e Rosenblatt's perceptron (Rosenblatt, 1962) based on simple
model of a neuron (McCulloch and Pitts, 1943) and a learning
algorithm.

Figure : Frank Rosenblatt in 1950 (source: Cornell University Library)



Vladmir Vapnik's Statistical Learning Theory

e Later machine learning research focused on theoretical
foundations of such models and their capacity to learn
(Vapnik, 1998).

Figure : Vladimir Vapnik “All Your Bayes ..." (source
http://lecun.com/ex/fun/index.html), see also
http://bit.ly/qfd2mU.
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Personal View

e Machine learning benefited greatly by incorporating ideas from
psychology, but not being afraid to incorporate rigorous theory.
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An extension of statistics?

e Early machine learning viewed with scepticism by statisticians.

e Modern machine learning and statistics interact to both
communities benefits.

e Personal view: statistics and machine learning are
fundamentally different. Statistics aims to provide a human
with the tools to analyze data. Machine learning wants to
replace the human in the processing of data.
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Mathematics and Bumblebees

For the moment the two overlap strongly. But they are not
the same field!

Machine learning also has overlap with Cognitive Science.

Mathematical formalisms of a problem are helpful, but they
can hide facts: i.e. the fallacy that “aerodynamically a bumble
bee can’t fly". Clearly a limitation of the model rather than
fact.

Mathematical foundations are still very important though:
they help us understand the capabilities of our algorithms.

But we mustn't restrict our ambitions to the limitations of
current mathematical formalisms. That is where humans give
inspiration.
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Statistics

What's in a Name?

Early statistics had great success with the idea of statistical
proof.

Question: | computed the mean of these two tables of
numbers (a statistic). They are different. Does
this “prove” anything?

Answer: it depends on how the numbers are generated,
how many there are and how big the difference.
Randomization is important.

Hypothesis testing: questions you can ask about your data are
quite limiting.

This can have the affect of limiting science too.

Many successes: crop fertilization, clinical trials, brewing,
polling.

Many open questions: e.g. causality.



Early 20th Century Statistics

e Many statisticians were Edwardian English gentleman.

Figure : William Sealy Gosset in 1908



Statistics and Machine Learning

Statisticians want to turn humans into computers.
Machine learners want to turn computers into humans.
We meet somewhere in the middle.

NDL 2012/06/16
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o Cricket and Baseball are two games with a lot of “statistics”.

e The study of the meaning behind these numbers is
“mathematical statistics” often abbreviated to “statistics”.
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Machine Learning and Probability

e The world is an uncertain place.

Epistemic uncertainty: uncertainty arising through lack of
knowledge. (What colour socks is that person
wearing?)

Aleatoric uncertainty: uncertainty arising through an
underlying stochastic system. (Where will a
sheet of paper fall if | drop it?)
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o We need a framework to characterise the uncertainty.

o In this course we make use of probability theory to
characterise uncertainty.



Richard Price

e Welsh philosopher and essay writer.

e Edited Thomas Bayes's essay which contained foundations of
Bayesian philosophy.

Figure : Richard Price, 1723-1791. (source Wikipedia)



Laplace

e French Mathematician and Astronomer.

Figure : Pierre-Simon Laplace, 1749-1827. (source Wikipedia)
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