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Introduction

» In most data science applications we are start off with a large
collection of objects which form our data set.

» Clustering is often an initial exploratory operation applied to
the data.

» The aim of clustering is the grouping of objects into subsets
with closely related objects in the same group or cluster.



Introduction

Sheep vs. Goats [Source Wikipedia]



Introduction

Apples vs. Oranges [Source: http://www.microassist.com/]
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Introduction

» Clustering has a number of applications such as:
» Image segmentation for lossy image compression
» Audio processing applications like diarization and voice activity
detection
» Clustering gene expression data
» Wireless network base station cooperation



Introduction

» Here we will consider a number of clustering algorithms:
» K-means clustering
» Gaussian mixture modelling
» Hierachical clustering



K-means

» Given a set of V data points, the goal of K-means clustering
is to assign each data point to one of K groups

» Each cluster is characterised by a cluster mean g
k=1,....K

» The data points are assigned to the clusters such that the
average dissimilarity of data points in the cluster from the
cluster mean is minimized.

» In K-means clustering the dissimilarity is measured using
Euclidean distance



K-means, Example

» Consider 2D data from two distinct clusters. K-means does a

good job of discovering these clusters.

Figure: Data with two distinct

clusters

Figure: Result of K-means
clustering
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K-means, The Theory

» Consider the N data points {xi,...,xy} which we would like
to partition into K clusters.

» We introduce K cluster centers ux k=1,..., K and
corresponding indicator variables r, , € {0,1} where r, , =1
if x, belongs to cluster k.

» The objective function is the sum of square distances of the
data points to assigned cluster centers. That is
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K-means, The Theory

1. The K-means algorithm proceeds iteratively. Starting with an
initial set of cluster centers, the variables r, , are determined.

nk =

1 if k = argmin||x, — 12
0 otherwise

2. In the next step, the cluster centers are updated based on the
current assignment

o Zn rn,kXn
p = B
Zn rnvk

3. Step 1 and 2 are repeated until the assignment remains
unchanged or the relative change in J is small.



K-means, Example
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Figure: Data with two distinct
clusters

Figure: Randomly initialize the

cluster centers
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K-means, Example

Figure: Assign data points to

cluster centers

Figure: Recompute cluster centers
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K-means, Example

Figure: Assign data points to

cluster centers

Figure: Recompute cluster centers
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K-means, Example

» To determine when to stop K-means, we monitor the cost
function J.

» In this case, 3 iterations are sufficient

25
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Iteration



K-means, Image compression Example

» K-means clustering can be used in image compression using
vector quantization.

» This algorithm takes advantage of the fact that several nearby
pixels of an image often appear the same.

» The image is divided into blocks which are then clustered
using K-means.

» The blocks are then represented using the centroids of the
clusters to which they belong.



K-means, Image compression Example

> In this example we start with a 196-by-196 pixel image of

Mzee Jomo Kenyatta
» We divide the image into 2-by-2 blocks and treat these blocks

as vectors in R*

> These vectors are clustered with K = 100 and K = 10

> The resulting image shows degradation but uses fewer bytes
for storage

Figure: VQ with 100  Figure: VQ with 10

Figure: Original Image
& & & classes classes



K-means, Image compression Example

» The original image requires 196 x 196 x 8 bits.

» To store the cluster to which each 2 x 2 block belongs to we
require log,(K) bits

> To store the cluster centers we need K x 4 real numbers

» The total storage for the compressed image is
logo(K) x #blocks = log,(K) x 198

» When K = 10, we can compress the image to bg%% =0.103
of its original size



K-means, Practical Issues

1. To avoid local minima we should have multiple random
initializations.

2. Initial cluster centers chosen randomly from the data points.
3. Choosing K- Elbow method.



Gaussian Mixture Models

» So far we have considered situations where each data point is
assigned to only one cluster.

» This is sometimes referred to as hard clustering

> In several cases it may be more approriate to consider
assigning each data point a probability of membership to each
cluster.

» This is soft clustering

» Gaussian Mixture Models are useful for soft clustering



Gaussian Mixture Models

» GMMs are ideal for modelling continuous data that can be
grouped into distinct clusters.

» For example consider a speech signal which contains regions
with speech and other regions with silence

» We could use a GMM to decide which category a certain
segment belongs to.
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Gaussian Mixture Models, VAD Example

>

Voice activity detection is a useful signal processing
application

It involves deciding whether a speech segment is speech or
silence

We divide the speech into short segments and compute the
logarithm of the energy of each segment.

We see that the log energy shows distinct clusters.

1 2

-3 -2 -1 0
Logarithm of block energy



Gaussian Mixture Models, VAD Example

» A single Gaussian does not fit the data well

0’0—6 -5 -4 -3 -2 -1 0 1 2 3

Logarithm of block energy



Gaussian Mixture Models, VAD Example

» Two Gaussians do a better job

0’0—6 -5 -4 -3 -2 -1 0 1 2 3

Logarithm of block energy



Gaussian Mixture Models, VAD Example

» Are three Gaussians even better?

0'0—6 -5 -4 -3 -2 -1 0 1 2 3

Logarithm of block energy



Gaussian Mixture Models, Theory

» The Gaussian distribution function for a 1D variable is given
by
1 { 1 2}
X) = —F—=e¢eX — —5=\X—
» The distribution is governed by two parameters

» The mean u

» The variance 2

» The mean determines where the distribution is centered and
the variance determines the spread of the distribution around
this mean.



Gaussian Mixture Models, Theory

Univariate Gaussian with =0 and o =1
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Gaussian Mixture Models, Theory

» The Gaussian density can not be used to model data with
more than one distinct ‘clump’ like the log energy of the
speech frames.

» Linear combinations of more than one Gaussian can capture
this structure.

» These distributions are known as Gaussian Mixture Models
(GMMs) or Mixture of Gaussians



Gaussian Mixture Models, Theory

» The GMM density takes the form

K
p(x) = > N (x| k. ox)

k=1

> T is known as a mixing coefficient. We have

K
ZT['k =1
k=1

and0§7rk§1
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Gaussian Mixture Models, Theory

» A GMM with three mixture components
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Gaussian Mixture Models, Theory

» The mixing coefficients can be viewed as the prior probability
of the components of the mixture

» We can then use the sum and product rules and write

K
p(x) =>_ p(k)p(x|k)
k=1
» Where
p(k) = mk
and

p(x|k) = N (x|, o%)



Gaussian Mixture Models, Theory

» Given an observation x, we will be interested to compute the
posterior probability of each component that is p(k|x)

» We use Bayes' rule

p(x|k)p(k)
p(x)
p(x|k)p(k)

2. P(x[1)p(i)

p(klx) =

» We can use this posterior to build a classifier



Gaussian Mixture Models, Learning the model

» Given a set of observations X = {x1, x2,...,xy} where the
observations are assumed to be drawn independently from a
GMM, the log likelihood function is given by

N K
0(6; X) = Z log { Z?TkN(Xi!uk, O'k)}
n=1 k=1

where 0 = {71, ..., Tk, l1, ..., liK, 0%, ..., 0%} are the
parameters of the GMM.

» To obtain a maximum likelihood estimate of the parameters,
we use the expectation maximization (EM) algorithm



Gaussian Mixture Models, Returning to the VAD Example

> In the VAD example we use the implementation of EM in
scikit-learn.

» We can then compute the posterior probability of all segments
belonging to the component with the highest mean.

» Segments where this probability is greater than a threshold
can be classified as speech.



Gaussian Mixture Models, Returning to the VAD Example
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Hierachical Clustering

» An approach to clustering that yields a hierarchy of clusters.

» Clusters in one level of the hierarchy are formed by merging
clusters in the lower level.

> At the lowest level of the hierarchy each datum is in its own
cluster.



Hierachical Clustering
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Hierachical Clustering
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Hierachical Clustering

» There are two main stategies:
» Agglomerative (bottom-up): Start with each item as a cluster
and succeccively merge clusters
» Divisive (top-down): Start with all items in one cluster and
recursively divide one of the exisiting clusters into two.



Agglomerative Clustering

> In agglomerative we begin with each data point in a singleton
cluster.

> At each step the two closest clusters are merged.
> We must specify a measure of dissimilarity between the
clusters. This will be problem specific

> If there are N data points there will be N — 1 steps. At each
step there is one less cluster.



Agglomerative Clustering-Measures of Dissimilarity

» If C; and Cy are two clusters, the dissimilarity between them is
denoted d(Ci1,C2) and is based on the pairwise dissimilarity of
items in each of the clusters.

» Let d; be the dissimilarity between i € C; and i’ € Cs.

» We can define the dissimilarity between the clusters in
different ways

» Single linkage:
d(Cy,Cr) = echin , dir

» Complete linkage:

d Cl Cz = max  djy
(€1, C) i€Cri’ecs

> Average linkage:

1
d(ChCQ) = m Z Z dii’

i€Cy i'€C



Agglomerative Clustering-Example

» Consider the dataset in the figure below




Agglomerative Clustering-Example

» The first step is to compute pair-wise dissimilarity between
the objects and find the closest pair of clusters. Here we use
Euclidean distance

0 1 2 3 4 5

0|- 0902 0.262 221 3.085 2.696
1 - 1.035 2.605 3.192 2977
2 - 1.951 2.85 2.443
3 - 1.176 0.563
4 - 0.662
5

» Merge {0} and {2} to form a new cluster {0,2}



Agglomerative Clustering-Example

> We then compute the distance between this new cluster and

the remaining clusters using single linkage

{0,2} 1 3 4 5
{0,2Y [ - 0002 1951 285 2696
1 - 2605 3.192 2977
3 - 1176 0.563
4 - 0.662
5 -

» Merge {3} and {5} to form a new cluster {3,5}



Agglomerative Clustering-Example

» The process of finding the pair of clusters with least
dissimilarity is repeated.

| {0,2} {3,5} 1 4
{0,2} | - 1.951 0.902 2.85
{3,5} - 2605 0.662
1 - 3192

4 i

» Merge {3,5} and {4} to form a new cluster {3,4,5}



Agglomerative Clustering-Example

» Then...
| {0,2} {3,455} 1
{0,2} - 1.951  0.902
{3,4,5} - 2.605
]_ _

» Merge {1} and {0,2} to form a new cluster {0, 1,2}



Agglomerative Clustering-A dendogram

» We can use a dendogram to give a pictorial representation of
the clustering.

» A node whose daughters are the merged clusters is formed at
a height equal to the dissimilarity between the clusters.




Agglomerative Clustering-Application to Audio Diarization

» We may want to cluster sections of audio according to ‘who
spoke when’

» This is known as audio diarization.

» We begin by detecting change points in the audio to form
initial clusters.

> We the perform agglomerative clustering on the initial clusters



Agglomerative Clustering-Application to Audio Diarization
» This example shows a recording of bird sounds with
vocalisation from two species

> The data set was used in the 2013 Machine Learning for
Signal Processing (MLSP) competition and is freely available!

Frequency (Hz)

Time (s)

'https://wuw.kaggle.com/c/mlsp-2013-birds/data ~ =

i
it
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»


https://www.kaggle.com/c/mlsp-2013-birds/data

Agglomerative Clustering-Application to Audio Diarization

» We perform change point detection to discover initial clusters
of sound segments.

Frequency (Hz)

Time (s)



Agglomerative Clustering-Application to Audio Diarization

» Perform agglomerative clustering on this initial set of clusters
to discover segments of audio produced by the same species.

» Code to reproduce the results is available on Github
(https://github.com/ciiram/BirdPy)
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Conclusion

» We have covered three main methods of clustering
» K-means clustering
» Gaussian mixture modelling
» Hierachical clustering
» We have demonstrate the use of clustering in
» Image compression
» Voice activity detection
» Audio Diarization

> In the talks we will consider clustering of gene sequence data



Conclusion

» Bishop, C. M. (2006). Pattern recognition and machine
learning. springer.

» MacKay, D. J. (2003). Information theory, inference and
learning algorithms. Cambridge university press.

» Friedman, J., Hastie, T., & Tibshirani, R. (2001). The
elements of statistical learning (Vol. 1). Springer, Berlin:
Springer series in statistics.
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